Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Acta Paediatr ; 112(5): 1049-1055, 2023 05.
Article in English | MEDLINE | ID: covidwho-2301196

ABSTRACT

AIM: Human bocavirus 1 (HBoV1) has been associated with respiratory tract infections in children. We aimed at retrospectively describing patient characteristics, seasonality, pre-existing medical conditions, codetections, clinical manifestations and complications of HBoV1 infection in relation to viral load in the child population in Stockholm, with the overarching aim of elucidating the clinical significance of HBoV1. METHODS: We included all hospitalised children 0-17 years testing positive for HBoV1 by real-time polymerase chain reaction on nasopharyngeal aspirates 1 July 2008-30 June 2019. Patients with HBoV1 single detection, high viral load expressed as an HBoV1-DNA cycle threshold (Ct) < 25, or both, were separately analysed. We retrieved information on pre-existing conditions and clinical course from the medical records. RESULTS: We found 768 episodes in 727 children, 496 (64.6%) male and 441 (60.7%) previously healthy. The median age was 17.6 months. Most (476/768, 62.0%) episodes occurred during December-March. HBoV1 was in 549 episodes (71.5%) codetected with other viruses. Ct < 25 was independently associated with young age, single detection of HBoV1 and presentation early in the epidemic season. We saw few differences in clinical manifestations between the subgroups. CONCLUSION: Our findings are consistent with primary HBoV1 infection causing mild-to-severe respiratory tract manifestations in young children.


Subject(s)
Human bocavirus , Parvoviridae Infections , Respiratory Tract Infections , Humans , Child , Male , Infant , Child, Preschool , Female , Human bocavirus/genetics , Retrospective Studies , Parvoviridae Infections/diagnosis , Parvoviridae Infections/epidemiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Real-Time Polymerase Chain Reaction
2.
Cardiovasc Res ; 117(13): 2610-2623, 2021 11 22.
Article in English | MEDLINE | ID: covidwho-1450387

ABSTRACT

Infection of the heart muscle with cardiotropic viruses is one of the major aetiologies of myocarditis and acute and chronic inflammatory cardiomyopathy (DCMi). However, viral myocarditis and subsequent dilated cardiomyopathy is still a challenging disease to diagnose and to treat and is therefore a significant public health issue globally. Advances in clinical examination and thorough molecular genetic analysis of intramyocardial viruses and their activation status have incrementally improved our understanding of molecular pathogenesis and pathophysiology of viral infections of the heart muscle. To date, several cardiotropic viruses have been implicated as causes of myocarditis and DCMi. These include, among others, classical cardiotropic enteroviruses (Coxsackieviruses B), the most commonly detected parvovirus B19, and human herpes virus 6. A newcomer is the respiratory virus that has triggered the worst pandemic in a century, SARS-CoV-2, whose involvement and impact in viral cardiovascular disease is under scrutiny. Despite extensive research into the pathomechanisms of viral infections of the cardiovascular system, our knowledge regarding their treatment and management is still incomplete. Accordingly, in this review, we aim to explore and summarize the current knowledge and available evidence on viral infections of the heart. We focus on diagnostics, clinical relevance and cardiovascular consequences, pathophysiology, and current and novel treatment strategies.


Subject(s)
COVID-19/virology , Cardiomyopathy, Dilated/virology , Myocarditis/virology , Parvoviridae Infections/virology , Parvovirus B19, Human/pathogenicity , SARS-CoV-2/pathogenicity , Animals , Antiviral Agents/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/therapy , Cardiomyopathy, Dilated/diagnosis , Cardiomyopathy, Dilated/immunology , Cardiomyopathy, Dilated/therapy , Genetic Therapy , Host-Pathogen Interactions , Humans , Myocarditis/diagnosis , Myocarditis/immunology , Myocarditis/therapy , Parvoviridae Infections/diagnosis , Parvoviridae Infections/immunology , Parvoviridae Infections/therapy , Parvovirus B19, Human/immunology , SARS-CoV-2/immunology , COVID-19 Drug Treatment
3.
Pol J Vet Sci ; 24(1): 43-49, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1368400

ABSTRACT

In this study, we developed a SYBR Green I real-time PCR method for the rapid and sensitive detection of novel porcine parvovirus 7 (PPV7). Specific primers were designed based on the highly conserved region within the Capsid gene of PPV7. The established method was 1,000 times more sensitive than the conventional PCR method and had a detection limit of 35.6 copies. This method was specific and had no cross-reactions with PCV2, PCV3, PRV, PEDV, PPV1, and PPV6. Experiments testing the intra and interassay precision demonstrated a high reproducibility. Testing the newly established method with 200 clinical samples revealed a detection rate up to 17.5% higher than that of the conventional PCR assay. The established method could provide technical support for clinical diagnosis and epidemiological investigation of PPV7.


Subject(s)
Benzothiazoles , Diamines , Parvoviridae Infections/veterinary , Parvovirus, Porcine/isolation & purification , Quinolines , Real-Time Polymerase Chain Reaction/methods , Swine Diseases/virology , Animals , Parvoviridae Infections/diagnosis , Parvoviridae Infections/virology , Reproducibility of Results , Sensitivity and Specificity , Swine , Swine Diseases/diagnosis
5.
Vet Microbiol ; 251: 108878, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-808435

ABSTRACT

Canine chaphamaparvovirus (CaChPV) is a newly recognised parvovirus discovered by metagenomic analysis during an outbreak of diarrhoea in dogs in Colorado, USA, in 2017 and more recently detected in diarrhoeic dogs in China. Whether the virus plays a role as canine pathogen and whether it is distributed elsewhere, in other geographical areas, is not known. We performed a case-control study to investigate the possible association of CaChPV with enteritis in dogs. CaChPV DNA was detected both in the stools of diarrhoeic dogs (1.9 %, 3/155) and of healthy animals (1.6 %, 2/120). All the CaChPV-infected dogs with diarrhea were mixed infected with other enteric viruses such as canine parvovirus (formerly CPV-2), canine bufavirus (CBuV) and canine coronavirus (CCoV), whilst none of the asymptomatic CaChPV positive animals resulted co-infected. The nearly full-length genome and the partial capsid protein (VP) gene of three canine strains, Te/36OVUD/19/ITA, Te/37OVUD/19/ITA and Te/70OVUD/19/ITA, were reconstructed. Upon phylogenetic analyses based on the NS1 and VP aa sequences, the Italian CaChPV strains tightly clustered with the American reference viruses. Distinctive residues could be mapped to the deduced variable regions of the VP of canine and feline chaphamaparvoviruses, considered as important markers of host range and pathogenicity for parvoviruses.


Subject(s)
Diarrhea/veterinary , Dog Diseases/virology , Genome, Viral , Parvoviridae Infections/veterinary , Parvovirus, Canine/classification , Animals , Capsid Proteins/genetics , Case-Control Studies , Diarrhea/virology , Dogs/virology , Feces/virology , Host Specificity , Italy , Parvoviridae Infections/diagnosis , Parvoviridae Infections/virology , Parvovirus, Canine/isolation & purification , Pets/virology , Phylogeny , Viral Nonstructural Proteins/genetics
6.
Vet Clin North Am Small Anim Pract ; 50(6): 1307-1325, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-739798

ABSTRACT

Canine parvoviral enteritis is one of the most common causes of morbidity and mortality in dogs worldwide. Tests can detect viral antigen in feces, and characteristic decreases in total leukocyte, neutrophil, and lymphocyte counts can increase the index of suspicion in affected cases and can be used to prognosticate morbidity and mortality. The standard of care for infected animals includes IV crystalloid and sometimes colloid fluids, antiemetics, broad-spectrum antibiotics, and early enteral nutrition. Vaccination induces protective immunity in most dogs. Vaccination, along with limiting exposure in young puppies, is the most effective means of preventing parvoviral enteritis in dogs.


Subject(s)
Dog Diseases/diagnosis , Enteritis/veterinary , Parvoviridae Infections/veterinary , Parvovirus, Canine/isolation & purification , Animals , Crystalloid Solutions/administration & dosage , Dog Diseases/therapy , Dogs , Enteritis/diagnosis , Enteritis/therapy , Fluid Therapy/veterinary , Parvoviridae Infections/diagnosis , Parvoviridae Infections/therapy
7.
World J Pediatr ; 16(3): 293-298, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-617249

ABSTRACT

BACKGROUND: The role of human bocavirus (HBoV) as a respiratory pathogen has not been fulfilled yet. We aimed to describe clinical and serological characteristics of children with HBoV hospitalized for acute respiratory tract infection and to evaluate whether differences occur between HBoV alone and in co-infection. METHODS: We retrospectively reviewed data from 60 children (median age of 6.2 months, range 0.6-70.9) hospitalized for acute respiratory symptoms, with HBoV detected from a respiratory sample, using a reverse transcriptase-PCR for 14 respiratory viruses (including respiratory syncytial virus (RSV), influenza virus A and B, human coronavirus OC43, 229E, NL-63 and HUK1, adenovirus, rhinovirus, parainfluenza virus1-3, and human metapneumovirus). RESULTS: HBoV was detected alone in 29 (48.3%) patients, while in co-infection with other viruses in 31 patients (51.7%), with a peak between December and January. Among the 60 patients, 34 were bronchiolitis, 19 wheezing, 3 pneumonia, 2 upper respiratory tract infection, and 2 whooping cough. Seven children (11.6%) required admission to the paediatric intensive care unit (PICU) for respiratory failure. No differences was observed in age, family history for atopy and/or asthma, clinical presentations, chest X-ray, or laboratory findings in children with HBoV alone vs. multiple viral detection. RSV was the most frequently co-detected virus (61.3%). When compared with HBoV detection alone, the co-detection of RSV and HBoV was associated with male sex (P = 0.013), younger age (P = 0.01), and lower blood neutrophil count (P = 0.032). CONCLUSIONS: HBoV can be detected alone and in co-infection respiratory samples of children with an acute respiratory tract infection. A cause-effect relationship between HBoV and respiratory infection is not clear, so further studies are needed to clarify this point.


Subject(s)
Hospitalization/statistics & numerical data , Human bocavirus/isolation & purification , Parvoviridae Infections/diagnosis , Respiratory Tract Infections/virology , Acute Disease , Age Distribution , Child , Child, Preschool , Coinfection/epidemiology , Coinfection/virology , Databases, Factual , Emergency Service, Hospital , Female , Hospitals, University , Humans , Incidence , Infant , Intensive Care Units, Pediatric , Italy , Male , Parvoviridae Infections/epidemiology , Prognosis , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Retrospective Studies , Rome , Severity of Illness Index , Sex Distribution
SELECTION OF CITATIONS
SEARCH DETAIL